2026/01/28 03:28 12 Al

Al

Main function of Al on the sub is to make decisions of what the sub should do based on given data
from topics like sensors, vision, data, etc. It is using hierarchical state machine, which allows it to
cover majority of cases it will face.

Overview

Current Al uses SMACH package that is in ROS. SMACH is a task-level architecture for rapidly creating
complex robot behavior. At its core, SMACH is a ROS-independent Python library to build hierarchical
state machines.

Advantages of SMACH are:

1. rapid development, ability to create complex state machines
2. ability to quickly change state machines without big code changes
3. explicitly define outcomes of every state thus covering most or all possible situations

Current Al

Our current Al was re-written using SMACH. There are several utility files such as:

1. gate_util.py - all states that are used by gate Al, they are generic.

2. util.py - contains utility functions for vision to filter labels, get N most probably, normalize
coordinates from vision, or wrap yaw. Note that vision will be changed in future, some of
the functions will no longer be useful.

3. basic_states.py - contains all of the states for roulette and dice Al.

4. control_wrapper.py - wrapper made to ease communication with control system, making it easy
to send basic commands such as dive, yaw, pitch, roll, move forward.

5. start_switch.py - every high-level state machine must have start_switch as their first state. It is
a state that waits for ros message to be sent over topic /start_switch to be true at least 3 times.

6. blind_movement.py - contains move_forward state that moves forward with x speed for y
number of seconds.

7. SubscribeState.py - a state that was made which accept also topic to which you want to
subscribe. It is also modified to pass over any input/output keys. In future this file will also
contain SynchronousSubscribeState that subscribes to two topics and moves once it
has two

There is a useful tool to see state machine and transitions of it called smach_viewer. To run it, run
rosrun smach viewer smach viewer.py

An example of what our Al looks like in smach_viewer is this screenshot below

(]

Palouse RoboSub Technical Documentation - http://robosub-old.eecs.wsu.edu/wiki/

http://wiki.ros.org/smach
http://wiki.ros.org/smach_viewer

Last update: 2018/10/08 11:32 cs:ai:start http://robosub-old.eecs.wsu.edu/wiki/cs/ai/start?rev=1539023534

Things to know when developing Al

e When inheriting from SubscribeState instead of SmachState, you need to use
self.exit(“outcome”) instead of return “outcome”

e Every python script that is going to run any state machine must have in its main function
these lines of code below.

rospy.get time

e Every time you create control_wrapper instance, you need to set depth value again.

e If your state is using control wrapper to move, right before final outcome make sure to set
changed yaw/roll/pitch/forward to 0.

e Control wrapper forward and strafe do not use relative same way as yaw and pitch, use instead
strafeLeftError() and forwardError()

e Some current Al files use parameters from roscore server for different configuration of values.
They will crash if they do not load parameters. Parameters are located in /ros/robosub/param/
or some may be located in individual utility folders. To load parameters run

rosparam load [param_file name!.yaml

e Every time you restart roscore you need to reload parameters
e Qur vision detection requires undistortion to be running.

Example Flow Chart

graph LR; A(SM_ROOT)-->|execute|B[START _SWITCH]; subgraph RoboSub B-->C[GATE_TASK]; C-
->D[PATH_MARKER TASK1]; D-->E[DICE_TASK]; E-->F[PATH_MARKER TASK2]; F-->G[GOTO_PINGER];
G-->H{Where am 1?}; H-->|Roulette|I[ROULETTE_TASK]; H-->|Square|J[SQUARE_TASK]; end I-
->EN((end)) J-->EN((end)) click B "start_switch" click C "gate_task" click D "path_marker_task" click E
"dice_task" click F "path_marker_task" click G "goto_pinger" click | "roulette_task" click] "square_task"
style A fill: #fof stroke:#333,stroke-width:2px; style EN fill: #f9f,stroke: #333,stroke-width:2px;

From:
http://robosub-old.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link: (2]
http://robosub-old.eecs.wsu.edu/wiki/cs/ai/start?rev=1539023534

Last update: 2018/10/08 11:32

http://robosub-old.eecs.wsu.edu/wiki/ Printed on 2026/01/28 03:28

http://robosub-old.eecs.wsu.edu/wiki/
http://robosub-old.eecs.wsu.edu/wiki/cs/ai/start?rev=1539023534

	AI
	Overview
	Current AI
	Things to know when developing AI
	Example Flow Chart

