
2026/01/28 05:39 1/3 Git

Palouse RoboSub Technical Documentation - http://robosub-old.eecs.wsu.edu/wiki/

Git

Introduction

Git is a powerful and useful tool, but if used improperly it can be a clusterfuck for managing code. This
page is designed to serve as a basic introduction to git, outline how Robosub is using git, and links to
helpful information. How we use git is very much tied to the overall software development workflow,
so I recommend reading that as well.

Getting Started

I highly recommend you start out by going over our intro tutorial to git, which describes a few high-
level concepts that are important to understand before you start using git. For reference, you can find
the official git documentation here.

Branches

The workflow we use consists of a few types of branches.

1. dev - This branch can be assumed to always be stable, meaning the code in these branches should
always compile, and should pass all unit/module tests. User branches are merged into dev after
passing a code review.

2. master - In contrast to dev, this branch is considered to be super-stable, meaning it meets all the
requirements of dev, and in addition the code has been verified via sucessful pool test. Dev leads
master, and master catches up to dev whenever the code in dev is considered super-stable.

2. user/feature branches - These types of branches are the main ones most people will be
directly interacting with. When naming your branches, it's recommended to prefix the name with your
name. For example, if I was working on thruster code, I would name my branch “james/thruster”.

Rebase/Integration Method

We use the Rebase/Integration method as our workflow and policy for merging in new code. This
method is an alternative to the more common “branch and merge” method. The simple short version
of this policy is as follows:

Users always work on their own branch1.
When users feel their code is stable, they rebase onto the devbranch2.
A code review will be set up, possibly resulting in software tweaks (back to step 1)3.
An integrator will fast-forward the dev branch up to the user’s branch4.

Integrators are a small group of people that control what code ends up going into the dev branch and

http://robosub-old.eecs.wsu.edu/wiki/cs/software_workflow
https://git-scm.com/doc


Last update: 2016/08/19 21:07 cs:git:start http://robosub-old.eecs.wsu.edu/wiki/cs/git/start?rev=1471666075

http://robosub-old.eecs.wsu.edu/wiki/ Printed on 2026/01/28 05:39

keep the git repo clean. This group should only be a few people, possibly even just one person for
each repository. Team leads might be a good person for this position.

The day-to-day workflow for users is as follows:

fetch the latest changes1.
rebase current branch on the integration branch, fix any merge conflicts2.
start coding, make commits on own branch3.
always commit when done working for the day4.

Advantages

code has a very linear history
naturally encourages people to stay up to date with the integration branch
merge conflicts are easier and safer to resolve
stable code is controlled by a select few
No extra commits just showing a merge

Disadvantages

The parallel development history is lost
requires integrators to stay on top of things

Commit Often, then Squash Later

Users often go long periods without commiting their work, because they feel like small changes are
not worth committing. They wait until a substantial amount of changes have occurred, which can
range from a few days to a few weeks. This is bad! This results in others not being aware of work that
the user is doing, and also risks work getting lost. Users should at a minimum commit whatever they
have done at the end of their current work session that day.

Some may complain that this will result in a cluttered git history, however the solution for this is
simple. When code is ready to be put into an integration branch, the user should perform an
interactive rebase, and at that time they can squash together multiple commits into a single commit.
By doing this a user can have 15 commits on their own branch (useful when they are developing), but
when they believe their added feature is good and stable they can squash-rebase onto dev, and have
single commit representing all the changes for the added feature. This results in a very clean and
descriptive history when looking at the dev branch.

What Files to Commit?

As a general rule of thumb, the repo should only contain source files. Anything that is generated from
those source files (like binaries, build files, and logs) should not be committed, nor should data files.
Never, ever add binary files like pdfs, executables, zipfiles, movies, music etc. These will get deleted!



2026/01/28 05:39 3/3 Git

Palouse RoboSub Technical Documentation - http://robosub-old.eecs.wsu.edu/wiki/

Quick reference

git fetch retrieve the latest changes from the server
git rebase <other branch> rebase your current branch on top of \<other branch>, which
typically should be dev.
git checkout <file/directory name> reset all unstaged changes to \<file/directory
name>

From:
http://robosub-old.eecs.wsu.edu/wiki/ - Palouse RoboSub Technical Documentation

Permanent link:
http://robosub-old.eecs.wsu.edu/wiki/cs/git/start?rev=1471666075

Last update: 2016/08/19 21:07

http://robosub-old.eecs.wsu.edu/wiki/
http://robosub-old.eecs.wsu.edu/wiki/cs/git/start?rev=1471666075

	Git
	Introduction
	Getting Started
	Branches
	Rebase/Integration Method
	Advantages
	Disadvantages

	Commit Often, then Squash Later
	What Files to Commit?
	Quick reference


