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Multilateration

Previous derivations on this topic were made in years passed to enable calculations with limited
numbers of hydrophone channels. This page provides a generalized algorithm for locating a pinger in
3D in a robust, linear manner with an arbitrary number of arbitrarily placed hydrophones. This
solution is an unambiguous, precise result that evaluates at all distances and does not require that
the signal originate in the far-field.

This method of calculation requires 5 or more hydrophones. Substituting a depth sensor for one of the
required hydrophones is possible, and covered below. The submarine does not need to be held level
to make use of the depth sensor.

The exact math to implement for the solution can be found by scrolling directly to the bottom of this
page.

Problem Setup

Apart from a minimum number of hydrophones, there are no constraints on the set-up of the system.
One hydrophone $h_0$ is used as a reference and lies at the origin by definition. A second
hydrophone $h_1$ serves as a static reference point against the origin hydrophone. It may still be
placed at an arbitrary location. All other hydrophones $h_n$ for $n>1$ are evaluated against these
two hydrophones.

$h_0$ is at location $h_0 = (0,0,0)$
$h_1$ is at location $h_1 = (x_1,y_1,z_1)$
$h_n$ is at location $h_n = (x_n,y_n,z_n)$

The ping source is at location $$ p_{pinger} = (X,Y,Z) $$

When a ping is received by the hydrophones, the hardware outputs differences in time-of-arrival from
the origin, $\Delta t_n$, which corresponds to the difference in time between when the ping was
received by $h_0$ and $h_n$, which is a function of their pathlengths to the pinger.

$$ \Delta t_n = \frac{\sqrt{(X-x_n)^2 + (Y-y_n)^2 + (Z-z_n)^2} - \sqrt{X^2 + Y^2 + Z^2}}{c_s} $$

These time differences $\Delta t_n$ are multiplied by the speed of sound $c_s$ (~1500m/s) to find
path-length differences $\Delta r_n$

$$ \Delta r_n = \Delta t_n * c_s = \sqrt{(X-x_n)^2 + (Y-y_n)^2 + (Z-z_n)^2} - \sqrt{X^2 + Y^2 +
Z^2} $$

With these measured values, $x_n,y_n,z_n,\Delta r_n,$ for each hydrophone, we can fill in all values
for the linear expression between our measurements, and theposition of the pinger $(X,Y,Z)$.

Linear Equation

The linear equation takes the form:
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$$ A_nx = C_n - B_n \\ \begin{bmatrix} \begin{vmatrix} 2x_1 & 2x_n \\ \Delta r_1 & \Delta r_n \\
\end{vmatrix}, & \begin{vmatrix} 2y_1 & 2y_n \\ \Delta r_1 & \Delta r_n \\ \end{vmatrix}, &
\begin{vmatrix} 2z_1 & 2z_n \\ \Delta r_1 & \Delta r_n \\ \end{vmatrix} \end{bmatrix}
\begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} \begin{vmatrix}
(x_1^2+y_1^2+z_1^2) & (x_n^2+y_n^2+z_n^2) \\ \Delta r_1 & \Delta r_n \\ \end{vmatrix}
\end{bmatrix} - \begin{bmatrix} \begin{vmatrix} \Delta r_1^2 & \Delta r_n^2 \\ \Delta r_1 & \Delta
r_n \\ \end{vmatrix} \end{bmatrix} $$

This linear relationship is valid for all $n>1$. Note that the straight lines in the equations denote 2×2
determinants.

In order to get a definitive answer for the three unknown values $X, Y,$ and $Z,$ we need at least
three of these linear relations. Hence we need at least 3 hydrophones apart from the origin
hydrophone $h_0$ and the static reference hydrophone $h_1$. Or a total of 5 hydrophones minimum.

$$ Ax = C - B \\ \begin{bmatrix} A_{x2} & A_{y2} & A_{z2} \\ A_{x3} & A_{y3} & A_{z3}\\ A_{x4} &
A_{y4} & A_{z4}\\ \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} C_2
\\ C_3 \\ C_4\\ \end{bmatrix} - \begin{bmatrix} B_2 \\ B_3 \\ B_4\\ \end{bmatrix} \\ \begin{bmatrix}
\begin{vmatrix} 2x_1 & 2x_2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix}, & \begin{vmatrix} 2y_1 &
2y_2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix}, & \begin{vmatrix} 2z_1 & 2z_2 \\ \Delta r_1 & \Delta
r_2 \\ \end{vmatrix} \\ \begin{vmatrix} 2x_1 & 2x_3 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix}, &
\begin{vmatrix} 2y_1 & 2y_3 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix}, & \begin{vmatrix} 2z_1 &
2z_3 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix} \\ \begin{vmatrix} 2x_1 & 2x_4 \\ \Delta r_1 & \Delta
r_4 \\ \end{vmatrix}, & \begin{vmatrix} 2y_1 & 2y_4 \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix}, &
\begin{vmatrix} 2z_1 & 2z_4 \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix} \end{bmatrix}
\begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} \begin{vmatrix}
(x_1^2+y_1^2+z_1^2) & (x_2^2+y_2^2+z_2^2) \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix} \\
\begin{vmatrix} (x_1^2+y_1^2+z_1^2) & (x_3^2+y_3^2+z_3^2) \\ \Delta r_1 & \Delta r_3 \\
\end{vmatrix} \\ \begin{vmatrix} (x_1^2+y_1^2+z_1^2) & (x_4^2+y_4^2+z_4^2) \\ \Delta r_1 &
\Delta r_4 \\ \end{vmatrix} \\ \end{bmatrix} - \begin{bmatrix} \begin{vmatrix} \Delta r_1^2 & \Delta
r_2^2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix} \\ \begin{vmatrix} \Delta r_1^2 & \Delta r_3^2 \\
\Delta r_1 & \Delta r_3 \\ \end{vmatrix} \\ \begin{vmatrix} \Delta r_1^2 & \Delta r_4^2 \\ \Delta r_1 &
\Delta r_4 \\ \end{vmatrix} \\ \end{bmatrix} $$

Which would then be resolved as $$ X = A^{-1}(C-B) \\ \begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} =
\begin{bmatrix} A_{x2} & A_{y2} & A_{z2} \\ A_{x3} & A_{y3} & A_{z3}\\ A_{x4} & A_{y4} &
A_{z4}\\ \end{bmatrix}^{-1} \left( \begin{bmatrix} C_2 \\ C_3 \\ C_4\\ \end{bmatrix} -
\begin{bmatrix} B_2 \\ B_3 \\ B_4\\ \end{bmatrix} \right) $$

Rotation

In the event the submarine is rotated off of the default orientation $R(\psi,\phi,\theta) = R(0,0,0)$
then the relative estimation of the pinger's position will be off, and a correction must be made to get
the absolute coordinates $p_{pinger}=(X,Y,Z)$.

If the array is rotated by $R$ then the relative position of the pinger has been rotated in the local
frame by the inverse $R^T$

$$ R^T * X_{global} = X_{local} = A^{-1}(C-B) $$
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Therefore:

$$ X_{global} = RA^{-1}(C-B) $$

Which is our desired solution. Working backwards, we can also properly write the linear system for
each individual hydrophone as: $$ A_nR^TX_{global} = (C_n-B_n) $$

Depth Sensor Substitution

Now that the evaluation of $(X,Y,Z)$ is part of a linear system, it is easy to see how direct
measurements of any of the states can substitute for hydrophone measurements.

$$ \begin{bmatrix} A_{x2} & A_{y2} & A_{z2} \\ A_{x3} & A_{y3} & A_{z3}\\ 0 & 0 & 1\\
\end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} C_2 \\ C_3 \\
z_{pinger}\\ \end{bmatrix} - \begin{bmatrix} B_2 \\ B_3 \\ z_{sub}\\ \end{bmatrix} \\ $$

Which requires only 4 hydrophones, $h_0,h_1,h_2,$ and $h_3$ plus the depth sensor measuring
$z_{sub}$ to compared against the known depth of the pinger $z_{pinger}$.

However, the depth sensor will always measure the absolute depth of the submarine regardless of the
submarine's orientation $R(\psi,\phi,\theta)$. Thus the difference measured will always be
$z_{pinger}-z_{sub} = Z_{global}$.

Thus in order to properly set up the system, we must use the formula derived in the Rotation section:

$$ A_nR^TX_{global} = (C_n-B_n) $$

Which properly applied gives us the full equation:

$$ \begin{bmatrix} \begin{bmatrix} A_{x2} & A_{y2} & A_{z2} \\ A_{x3} & A_{y3} & A_{z3}\\
\end{bmatrix} * \begin{bmatrix} R \end{bmatrix}^T \\ \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}
\end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} C_2 \\ C_3 \\
z_{pinger}\\ \end{bmatrix} - \begin{bmatrix} B_2 \\ B_3 \\ z_{sub}\\ \end{bmatrix} \\ $$

Which finally lets us calculate the full solution:

Full Solution

$$ \begin{bmatrix} X \\ Y \\ Z \\ \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} A_{x2} & A_{y2}
& A_{z2} \\ A_{x3} & A_{y3} & A_{z3}\\ \end{bmatrix} * \begin{bmatrix} R \end{bmatrix}^T \\
\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \end{bmatrix}^{-1} \left( \begin{bmatrix} C_2 \\ C_3 \\
z_{pinger}\\ \end{bmatrix} - \begin{bmatrix} B_2 \\ B_3 \\ z_{sub}\\ \end{bmatrix} \right) \\ $$

With polar bearings:

$$ Azimuth = arctan\left(\frac{Y}{X}\right), \qquad Inclination =
arctan\left(\frac{Z}{\sqrt{X^2+Y^2}}\right), \qquad Range = \sqrt{X^2 + Y^2 + Z^2} \\ $$

given: $$ R = R(\psi,\phi,\theta), \qquad \Delta r_n = \Delta t_n * c_s, \qquad h_n = (x_n,y_n,z_n)\\
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A_{xn} = det\begin{vmatrix} 2x_1 & 2x_n \\ \Delta r_1 & \Delta r_n \end{vmatrix}, \qquad A_{yn} =
det\begin{vmatrix} 2y_1 & 2y_n \\ \Delta r_1 & \Delta r_n \end{vmatrix}, \qquad A_{zn} =
det\begin{vmatrix} 2z_1 & 2z_n \\ \Delta r_1 & \Delta r_n \end{vmatrix}, \\ B_n = det\begin{vmatrix}
\Delta r_1^2 & \Delta r_n^2 \\ \Delta r_1 & \Delta r_n \end{vmatrix}, \qquad C_n =
det\begin{vmatrix} (x_1^2+y_1^2+z_1^2) & (x_n^2+y_n^2+z_n^2) \\ \Delta r_1 & \Delta r_n
\end{vmatrix} $$

Coding Implementation

The elements of the linear equations all being determinates is enumerated as such to maintain the
underlying structure of the calculations. However, calculating all those determinates is cumbersome
for a real implementation. Because the results are all 2×2 determinates with common 2nd rows, we
can simplify the calculation significantly. As such, the following implementation may be preferable:

$$ AR^TX_{global} = C - B \\ A = \begin{bmatrix} \begin{vmatrix} 2x_1 & 2x_2 \\ \Delta r_1 & \Delta
r_2 \\ \end{vmatrix}, & \begin{vmatrix} 2y_1 & 2y_2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix}, &
\begin{vmatrix} 2z_1 & 2z_2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix} \\ \begin{vmatrix} 2x_1 &
2x_3 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix}, & \begin{vmatrix} 2y_1 & 2y_3 \\ \Delta r_1 & \Delta
r_3 \\ \end{vmatrix}, & \begin{vmatrix} 2z_1 & 2z_3 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix} \\
\begin{vmatrix} 2x_1 & 2x_4 \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix}, & \begin{vmatrix} 2y_1 &
2y_4 \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix}, & \begin{vmatrix} 2z_1 & 2z_4 \\ \Delta r_1 & \Delta
r_4 \\ \end{vmatrix} \end{bmatrix} = \begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\ \Delta r_3 &
0 & -\Delta r_1 & 0 \\ \Delta r_4 & 0 & 0 & -\Delta r_1 \end{bmatrix} \cdot 2 \cdot \begin{bmatrix} x_1
& y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix} \\ C =
\begin{bmatrix} \begin{vmatrix} (x_1^2+y_1^2+z_1^2) & (x_2^2+y_2^2+z_2^2) \\ \Delta r_1 &
\Delta r_2 \\ \end{vmatrix} \\ \begin{vmatrix} (x_1^2+y_1^2+z_1^2) & (x_3^2+y_3^2+z_3^2) \\
\Delta r_1 & \Delta r_3 \\ \end{vmatrix} \\ \begin{vmatrix} (x_1^2+y_1^2+z_1^2) &
(x_4^2+y_4^2+z_4^2) \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix} \\ \end{bmatrix} =
\begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\ \Delta r_3 & 0 & -\Delta r_1 & 0 \\ \Delta r_4 & 0 & 0
& -\Delta r_1 \end{bmatrix} \begin{bmatrix} (x_1^2+y_1^2+z_1^2) \\ (x_2^2+y_2^2+z_2^2) \\
(x_3^2+y_3^2+z_3^2) \\ (x_4^2+y_4^2+z_4^2) \end{bmatrix} \\ B = \begin{bmatrix}
\begin{vmatrix} \Delta r_1^2 & \Delta r_2^2 \\ \Delta r_1 & \Delta r_2 \\ \end{vmatrix} \\
\begin{vmatrix} \Delta r_1^2 & \Delta r_3^2 \\ \Delta r_1 & \Delta r_3 \\ \end{vmatrix} \\
\begin{vmatrix} \Delta r_1^2 & \Delta r_4^2 \\ \Delta r_1 & \Delta r_4 \\ \end{vmatrix} \\
\end{bmatrix} = \begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\ \Delta r_3 & 0 & -\Delta r_1 & 0 \\
\Delta r_4 & 0 & 0 & -\Delta r_1 \end{bmatrix} \begin{bmatrix} \Delta r_1^2 \\ \Delta r_2^2 \\ \Delta
r_3^2 \\ \Delta r_4^2 \end{bmatrix} $$

We've taken the 2×2 determinate operation and transformed it into a matrix product. Now all the
elements more clearly become the result of the measurements and the position of the hydrophones:

$$ \begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\ \Delta r_3 & 0 & -\Delta r_1 & 0 \\ \Delta r_4 & 0
& 0 & -\Delta r_1 \end{bmatrix} \cdot 2 \cdot \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^T
\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\ \Delta
r_3 & 0 & -\Delta r_1 & 0 \\ \Delta r_4 & 0 & 0 & -\Delta r_1 \end{bmatrix} \left( \begin{bmatrix}
(x_1^2+y_1^2+z_1^2) \\ (x_2^2+y_2^2+z_2^2) \\ (x_3^2+y_3^2+z_3^2) \\
(x_4^2+y_4^2+z_4^2) \end{bmatrix} - \begin{bmatrix} \Delta r_1^2 \\ \Delta r_2^2 \\ \Delta r_3^2
\\ \Delta r_4^2 \end{bmatrix} \right) \\ r_{det} = \begin{bmatrix} \Delta r_2 & -\Delta r_1 & 0 & 0 \\
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\Delta r_3 & 0 & -\Delta r_1 & 0 \\ \Delta r_4 & 0 & 0 & -\Delta r_1 \end{bmatrix}, \quad H =
\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4
\end{bmatrix} \\ r_{det} \cdot 2HR^TX_{global} = r_{det} \cdot (|H|^2 - \Delta r^2) \\ X_{global} =
inv(r_{det} \cdot 2HR^T) \cdot r_{det} \cdot (|H|^2 - \Delta r^2) $$

Which is a much simpler implementation. Only $r_{det}$ and $\Delta r^2$ need to be re-calculated
upon every measurement.

A few notes:

- $r_{det}$ cannot be factored out of the equation because it is not a full-rank invertible matrix.

- The role of rotation matrix $R(\psi,\phi,\theta)$ is much more evident here. The submarine being
rotated off of alignment with the global coordinate space is equivalent to the positions of all the
hydrophones $H$ being rotated by the same amount.

- When mixing in the depth sensor in place of your fourth non-reference hydrophone $h_4$, remove
the 4th row from $H$ and $\Delta r^2$, as well as the third row and fourth column from $r_{det}$.
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